

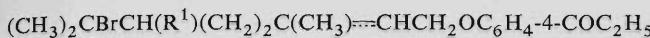
TERPENOID DERIVATIVES OF 4-HYDROXYPROPIOPHENONE AS JUVENOIDS AND JUVENOGENS. III.

Jitka KAHOVCOVÁ and Miroslav ROMAŇUK

*Institute of Organic Chemistry and Biochemistry,
Czechoslovak Academy of Sciences, 166 10 Prague 6*

Received February 4th, 1981

Using reactions modifying 4-(3,7-dimethyl-2,6-octadienyloxy)propiophenone and 4-(3,7-dimethyl-2-octenyloxy)propiophenone a series of new potential juvenoids and juvenogens was synthetized.


In this paper, which is a continuation of the study of the relationships between structure and juvenile-hormonal activity in the series of chemically modified 4-(3,7-dimethyl-2,6-octadienyloxy)propiophenone and 4-(3,7-dimethyl-2-octenyloxy)propiophenone^{1,2}, derivatives of 4-hydroxypropiophenone are described which contain a halogen atom in the terpenoid part of the molecule.

As a reaction for the introduction of a bromine or chlorine atom in the terpenoid part of the molecules the halogen-alkoxylation reaction was used, carried out by means of N-bromosuccinimide or N-chlorosuccinimide in hydroxy compounds as medium³. The reaction products (compounds *I*, *IV*–*XI*, *XIII*, *XIV*, *XVI*, *XVII*, Table I) were dependent on the reaction temperature and the type of alcohol. Thus, for example, on reaction of 4-(3,7-dimethyl-2,6-octadienyloxy)propiophenone with N-bromosuccinimide in methanol at 0–5°C 7-bromo-6-methoxy derivative *IV* was formed, while at 15–25°C it was 2,3;6,7-bis(bromomethoxy) derivative *VI*. When 4-(3,7-dimethyl-2,6-octadienyloxy)- or 4-(3,7-dimethyl-2-octenyloxy)propiophenone was reacted with N-bromosuccinimide in the presence of aqueous dimethyl sulfoxide, bromohydrin derivatives *II* and *III* (Table I) were formed, respectively. An identical substance was also obtained on reaction of 4-(6,7-epoxy-3,7-dimethyl-2-octenyloxy)propiophenone with 0.5M-HBr in a mixture of acetic anhydride and acetic acid at room temperature. Hydroxy compound *II* was further etherified using 2,3-dihydro-4*H*-pyran or ethyl vinyl ether, under formation of compounds *XII* and *XV*, while when acetylated with acetic anhydride, derivative *XVIII* (Table I) was formed. Reduction of keto derivatives *II*–*V*, *X* and *XIV* with lithium aluminum hydride gave products *XIX*–*XXIV* (Table II).

Juvenogenic compounds *XXV*–*XXXI* (Table II) were prepared from 7-bromo-6-hydroxy compound *III*, 7-bromo-6-methoxy derivatives *IV* and *V*, 7-bromo-6-isopropoxy compound *X* and 7-bromo-6-(1-methoxyethoxy)derivative *XIII*.

TABLE I

Characterization of compounds of the type

No	R ¹	Yield weight %	Formula (M.w.)	Calculated/Found	
				% C	% H
I ^a	OCH ₃	33	C ₂₁ H ₃₂ Cl ₂ O ₄ (419.4)	60.13 60.16	7.69 7.48
II ^b	OH	65	C ₁₉ H ₂₇ BrO ₃ (383.3)	59.53 59.28	7.10 7.36
III ^{c,d}	OH	62	C ₁₉ H ₂₉ BrO ₃ (385.3)	59.21 59.23	7.59 7.46
IV ^e	OCH ₃	95	C ₂₀ H ₂₉ BrO ₃ (397.3)	60.45 60.18	7.35 7.22
V ^{c,f}	OCH ₃	82	C ₂₀ H ₃₁ BrO ₃ (399.3)	60.14 60.00	7.82 8.06
VI ^g	OCH ₃	74	C ₂₁ H ₃₂ Br ₂ O ₄ (508.3)	49.61 49.48	6.34 6.62
VII	OC ₂ H ₅	50	C ₂₁ H ₃₁ BrO ₃ (411.4)	61.31 61.15	7.59 7.58
VIII ^h	OC ₃ H ₇	48	C ₂₂ H ₃₃ BrO ₃ (425.4)	62.11 62.11	7.82 8.12
IX	Oi-C ₃ H ₇	31	C ₂₂ H ₃₃ BrO ₃ (425.4)	62.11 62.32	7.82 7.80
X ^{c,i}	Oi-C ₃ H ₇	30	C ₂₂ H ₃₅ BrO ₃ (427.4)	61.82 61.59	8.25 8.03
XI ^j	OC ₄ H ₉	45	C ₂₃ H ₃₅ BrO ₃ (439.4)	62.86 62.56	8.02 8.18
XII	OCH(CH ₃)OC ₂ H ₅	25	C ₂₃ H ₃₅ BrO ₄ (455.4)	60.65 60.38	7.74 7.85
XIII ^k	OC ₂ H ₄ OCH ₃	50	C ₂₂ H ₃₃ BrO ₄ (441.4)	59.86 59.64	7.53 7.63
XIV ^{c,l}	OC ₂ H ₄ OCH ₃	45	C ₂₂ H ₃₅ BrO ₄ (443.4)	59.59 59.88	7.96 7.82
XV ^m	O(2-C ₅ H ₉ O)	90	C ₂₄ H ₃₅ BrO ₄ (467.4)	61.66 61.66	7.54 7.24
XVI	OC ₂ H ₄ Cl	11	C ₂₁ H ₃₀ BrClO ₃ (445.8)	56.57 56.85	6.78 7.07

TABLE I
(Continued)

No	R ¹	Yield weight %	Formula (M.w.)	Calculated/Found	
				% C	% H
XVII ⁿ	OCH ₂ C ₆ H ₅	10	C ₂₆ H ₃₃ BrO ₃ (473.4)	65.95 65.92	7.02 6.71
XVIII ^o	OCOCH ₃	35	C ₂₁ H ₂₉ BrO ₄ (425.4)	59.29 59.04	6.87 6.66

^a (3,7-Dichloro-2,6-dimethoxy)alkyl compound; calculated: 16.91% Cl; found: 17.40% Cl; mass spectrum: 404/6/8 (C₂₀H₃₀Cl₂O₄), 368/70 (C₂₀H₂₉ClO₄), 353/5 (C₁₉H₂₆ClO₄), 339/41 (C₁₈H₂₄ClO₄), 336/8 (C₁₉H₂₅ClO₃), 307/9 (C₁₇H₂₀ClO₃), 296/8 (C₁₆H₂₁ClO₃), 151 (C₉H₁₁O₂), 121 (C₇H₅O₂), 107/9 (C₄H₈ClO), 97 (C₆H₉O). ^b B.p. 168–170°C/13 Pa; mass spectrum: 382/4 (M⁺), 302 (C₁₉H₂₆O₃), 231/3 (C₁₀H₁₆BrO), 151 (C₉H₁₁O₂), 150 (C₉H₁₀O₂), 121 (C₇H₅O₂), 93 (C₆H₅O); IR spectrum (5%): 3 615, 3 573 (νOH), 3 473 (ν(OH) assoc.), 1 688 (νCO), 1 670 (ν(C=C)), 1 604, 1 583, 1 514 (ν arom.) cm^{−1}. ^c 2,3-Dihydro compound. ^d B.p. 176–178°C/13 Pa; IR spectrum (3%): 3 616, 3 572 (ν(OH)), 3 500 (ν(OH) assoc.), 1 686 (ν(CO)), 1 603, 1 577, 1 513 (ν arom.), 1 368, 1 379 (δ_s(CH₃)) cm^{−1}. ^e ¹H-NMR spectrum, δ (ppm): 0.89 to 1 (m, 3 H), 1.19 (t, 3 H, J = 7), 1.31 (s, 3 H), 1.34 (s, 3 H), 1.43–2.04 (m, 6 H), 2.94 (q, 2 H, J = 7), 3.32 3.7 (m, H), 3.82–4.18 (m, 3 H), 6.92 (d, 2 H, J = 9), 7.96 (d, 2 H, J = 9); mass spectrum: 384/6 (M⁺), 369/71 (C₁₈H₂₆BrO₃), 355/7 (C₁₇H₂₄BrO₃), 304 (C₁₉H₂₈O₃), 291 (C₁₈H₂₇O₃), 275 (C₁₈H₂₇O₂), 247 (C₁₆H₂₃O₂), 233 (C₁₅H₂₁O₂), 219 (C₁₄H₁₉O₂), 205 (C₁₃H₁₇O₂), 191 (C₁₂H₁₅O₂), 177 (C₁₁H₁₃O₂), 163 (C₁₀H₁₁O₂), 155 (C₁₀H₁₉O), 150 (C₉H₁₀O₂), 137 (C₁₀H₁₇), 121 (C₇H₅O₂). ^f B.p. 164–166°C/13 Pa; calculated 20.11% Br, found 20.46% Br; mass spectrum: 396/8 (M⁺), 381/3 (C₁₉H₂₆BrO₃), 365/7 (C₁₉H₂₆BrO₂), 285 (C₁₉H₂₅O₂), 247/9 (C₁₁H₂₀BrO), 215/7 (C₁₀H₁₆Br), 167 (C₁₁H₁₉O), 151 (C₉H₁₁O₂), 150 (C₉H₁₀O₂), 135 (C₁₀H₁₅), 121 (C₇H₅O₂), 93 (C₆H₅O). ^g B.p. 170–172°C/13 Pa; mass spectrum: 398/400 (M⁺), 383/5 (C₁₉H₂₈BrO₃), 369/71 (C₁₈H₂₆BrO₃), 367 (C₁₉H₂₈BrO₂), 318 (C₂₀H₃₀O₃), 289 (C₁₈H₂₅O₃), 150 (C₉H₁₀O₂), 121 (C₇H₅O₂); IR spectrum (3%): 1 686 (ν(CO)), 1 604, 1 577, 1 513 (ν arom.), 1 381, 1 367 (δ_s(CH₃)) cm^{−1}. ^h ¹H-NMR spectrum, δ (ppm): 0.89–1 (m, 3 H), 1.19 (t, 3 H, J = 7), 1.26 (s, 3 H), 1.31 (s, 3 H), 1.5–2.0 (m, 6 H), 2.94 (q, 2 H, J = 7), 3.25 (s, 3 H), 3.25–3.55 (m, H), 3.75–4.20 (m, 3 H), 6.91 (m, 2 H, J = 9), 7.95 (m, 2 H, J = 9). ⁱ (3,7-Dibromo-2,6-dimethoxy)alkyl compound; calculated: 31.40% Br; found: 31.31% Br; mass spectrum: 506/8/10 (M⁺), 477/9/81 (C₁₉H₂₇Br₂O₄), 446/8/50 (C₁₈H₂₄Br₂O₃), 426/8 (C₂₁H₃₁BrO₄), 277/9 (C₁₂H₂₂BrO₂), 251/3 (C₁₀H₂₀BrO₂), 245/7 (C₁₁H₁₈BrO), 191/3 (C₇H₁₂BrO), 151 (C₉H₁₁O₂), 150 (C₉H₁₀O₂), 121 (C₇H₅O₂); ¹H-NMR spectrum, δ (ppm): 1.29 (s, 3 H), 1.34 (s, 6 H), 1.20 (t, 3 H, J = 7), 2.94 (q, 2 H, J = 7), 1.50–2.40 (m, 4 H), 3.92 (m, H), 3.22 (s, 3 H), 3.26 (s, 3 H), 4.32 (m, 2 H), 4.67 (m, H), 6.96 (m, 2 H, J = 9), 7.44 (m, 2 H, J = 9).

^j ¹H-NMR spectrum; δ (ppm): 0.89 (t, 3 H, J = 7), 1.21 (t, 3 H, J = 7), 1.26 (s, 3 H), 1.31 (s, 3 H), 1.75 (s, 3 H), 1.52 (m, 2 H), 1.82 (m, 2 H), 2–2.5 (m, 2 H), 2.94 (q, 2 H, J = 7), 3.28 (m, 2 H), 3.88 (m, H), 4.61 (d, 2 H, J = 6.5), 5.56 (t, H, J = 6.5), 6.92 (m, 2 H, J = 9), 7.93 (m, 2 H, J = 9). ^k ¹H-NMR spectrum: δ (ppm): 0.85–1.02 (m, 3 H), 1.12 (dd, 6 H, J = 6), 1.20 (t, 3 H, J = 7), 1.26 (s, 3 H), 1.33 (s, 3 H), 1.45–2.0 (m, 6 H), 2.94 (q, 2 H, J = 7), 3.28 to 4.08 (m, 5 H), 6.91 (d, 2 H, J = 9), 7.98 (d, 2 H, J = 9); mass spectrum: 426/8 (M⁺), 411/3

on reduction of the keto group with LiAlH_4 and subsequent acylation of the hydroxy compounds *XX*–*XXIV*. Identical products were also obtained when the reaction sequence was reversed, *i.e.* on reduction of the oxo compound, acylation and subsequent bromomethylation of the reaction product. In addition to the above-mentioned derivatives *I*–*XXXI* 4-(6,7-dibromo-3,7-dimethyl-2-octenylloxy)-, 4-(6,7-dibromo-3,7-dimethyloctyloxy)- and 4-(3,7-dimethyl-2,3,6,7-tetrabromoocetylloxy)-propiophenone (compounds *XXXII*–*XXXIV*, Table III) were prepared by addition of bromine to the double bond of 4-(3,7-dimethyl-2,6-octadienylloxy)- and 4-(3,7-dimethyl-2-octenylloxy)propiophenone.

Using all these modifying reactions a series of juvenoids and juvenogens was prepared from 4-(3,7-dimethyl-2,6-octadienylloxy)- and 4-(3,7-dimethyl-2-octenylloxy)-propiophenone, displaying a promising juvenile hormone activity in insect metabolism. Thus, for example, for the bug *Dysdercus cingulatus* (Hemiptera, *Pyrrhocoridae*) the activity range was 100–0.008 ID-50 morphologic units⁴, for *Graphosoma italicum* (Hemiptera, *Pentatomidae*) it was 1 000–0.8 ID-50 morphologic units, and for the beetle *Tenebrio molitor* (Coleoptera, *Tenebrionidae*) it was 500–8 ID-50 morphologic units.

EXPERIMENTAL

The products were purified chromatographically on a silica gel column (60–120 μm , Service laboratory of the Institute), containing 8% (by weight) of water. The homogeneity of the fractions was determined by thin-layer chromatography on silica gel G (Merck) and Silufol with luminescent indicator (Kavalier), using H_2SO_4 or UV light of 254 nm wavelength for detection. The boiling points were not corrected. In some instances the chemical structure of the synthetized compounds

($\text{C}_{21}\text{H}_{32}\text{BrO}_3$), 397/9 ($\text{C}_{20}\text{H}_{30}\text{BrO}_3$), 366/8 ($\text{C}_{19}\text{H}_{27}\text{BrO}_2$), 337/9 ($\text{C}_{17}\text{H}_{22}\text{BrO}_2$), 305 ($\text{C}_{19}\text{H}_{29}\text{O}_3$), 288 ($\text{C}_{19}\text{H}_{28}\text{O}_2$), 275 ($\text{C}_{17}\text{H}_{23}\text{O}_3$), 259 ($\text{C}_{17}\text{H}_{23}\text{O}_2$), 247 ($\text{C}_{16}\text{H}_{23}\text{O}_2$), 219 ($\text{C}_{14}\text{H}_{19}\text{O}_2$), 203 ($\text{C}_{13}\text{H}_{15}\text{O}_2$), 189 ($\text{C}_{12}\text{H}_{13}\text{O}_2$), 177 ($\text{C}_{11}\text{H}_{13}\text{O}_2$), 163 ($\text{C}_{10}\text{H}_{11}\text{O}_2$), 150 ($\text{C}_9\text{H}_{10}\text{O}_2$), 137 ($\text{C}_{10}\text{H}_{17}$), 121 ($\text{C}_7\text{H}_5\text{O}_2$). ¹IR spectrum (3%): 1 686 (ν CO), 1 604, 1 578, 1 513 (ν arom.), 1 381, 1 369 ($\delta_s(\text{CH}_3)$ cm^{-1}); mass spectrum: 438/40 (M^+), 423/5 ($\text{C}_{22}\text{H}_{32}\text{BrO}_3$), 409/11 ($\text{C}_{21}\text{H}_{30}\text{BrO}_3$), 381/3 ($\text{C}_{20}\text{H}_{30}\text{BrO}_2$), 289/91 ($\text{C}_{14}\text{H}_{26}\text{BrO}$), 215/7 ($\text{C}_{10}\text{H}_{16}\text{Br}$), 151 ($\text{C}_9\text{H}_{11}\text{O}_2$), 135 ($\text{C}_{10}\text{H}_{15}$); ¹H-NMR spectrum δ(ppm): 0.88 (t, 3 H, $J = 7$), 1.16 (t, 3 H, $J = 7$), 1.23 (s, 3 H) 1.28 (s, 3 H), 1.52 (m, 4 H), 1.73 (s, 3 H), 1.82 (m, 2 H), 2.2 (m, 2 H), 2.91 (q, 2 H, $J = 7$), 3.28 (m, 2 H), 3.88 (m, H), 4.58 (d, 2 H, $J = 6.5$), 5.53 (m, H), 6.91 (m, 2 H, $J = 8.5$), 7.95 (m, 2 H, $J = 8.5$). ^kMass spectrum: 440/2 (M^+), 425/7 ($\text{C}_{21}\text{H}_{30}\text{BrO}_4$), 411/3 ($\text{C}_{20}\text{H}_{28}\text{BrO}_4$), 365/7 ($\text{C}_{19}\text{H}_{26}\text{BrO}_2$), 335/7 ($\text{C}_{17}\text{H}_{20}\text{BrO}_2$), 291/3 ($\text{C}_{13}\text{H}_{24}\text{BrO}_2$), 285 ($\text{C}_{19}\text{H}_{25}\text{O}_2$), 215/7 ($\text{C}_{10}\text{H}_{16}\text{Br}$), 210 ($\text{C}_{13}\text{H}_{22}\text{O}_2$), 189 ($\text{C}_{12}\text{H}_{13}\text{O}_2$), 159/61 ($\text{C}_6\text{H}_8\text{Br}$), 151 ($\text{C}_9\text{H}_{11}\text{O}_2$), 135 ($\text{C}_8\text{H}_7\text{O}_2$), 131 ($\text{C}_7\text{H}_{15}\text{O}_2$), 121 ($\text{C}_7\text{H}_5\text{O}_2$). ^lIR spectrum (3%): 1 741 (ν CO ester.), 1 603, 1 577, 1 514 (ν arom.), 1 382, 1 368 ($\delta_s(\text{CH}_3)$ cm^{-1}). ^mMass spectrum: 334/6 ($\text{C}_{17}\text{H}_{19}\text{BrO}_2$), 203 ($\text{C}_{13}\text{H}_{15}\text{O}_2$), 151 ($\text{C}_9\text{H}_{11}\text{O}_2$), 121 ($\text{C}_7\text{H}_5\text{O}_2$), 84 ($\text{C}_5\text{H}_8\text{O}$). ⁿMass spectrum: 364/6 ($\text{C}_{19}\text{H}_{25}\text{BrO}_2$), 322/4 ($\text{C}_{17}\text{H}_{23}\text{BrO}$), 298/300 ($\text{C}_{15}\text{H}_{23}\text{BrO}$), 259 ($\text{C}_{17}\text{H}_{23}\text{O}_2$), 249/51 ($\text{C}_{10}\text{H}_{18}\text{BrO}_2$), 231/3 ($\text{C}_{10}\text{H}_{16}\text{BrO}$), 150 ($\text{C}_9\text{H}_{10}\text{O}_2$), 137 ($\text{C}_{10}\text{H}_{17}$), 121 ($\text{C}_7\text{H}_5\text{O}_2$), 108 ($\text{C}_7\text{H}_8\text{O}$). ^oIR spectrum (3%): 1 745 (ν CO), 1 688 (ν CO), 1 672 (ν $\text{C}=\text{C}$), 1 603, 1 581 (ν arom.), 1 229 (ν $\text{C}-\text{O}$) cm^{-1} .

was confirmed by IR (UR 20 spectrophotometer), mass (AEI MS-902 spectrometer, 70 eV ionization potential) and $^1\text{H-NMR}$ (Varian HA-60 and HA-100, C^2HCl_3 , tetramethylsilane, 60 and 100 MHz) spectrometry.

Preparation of Compounds *I*–*V*, *VII*–*XI*, *XIII*, *XIV*, *XVI*, and *XVII*

N-Bromosuccinimide (N-chlorosuccinimide) (0.02 mol) was added at 0–5°C under nitrogen to a solution of 4-(3,7-dimethyl-2,6-octadienyoxy)- or 4-(3,7-dimethyl-2-octenyoxy)propiophenone in anhydrous methanol (ethanol, n-propanol, 2-propanol, n-butanol, 2-methoxyethanol, 2-chloroethanol, benzyl alcohol) or to a solution of these substances (0.01 mol) in 50 ml dimethyl sulfoxide and 0.55 ml of H_2O and the mixture was stirred at this temperature for 15 min. After dilution with water the mixture was extracted with diethyl ether. The ethereal layer was dried over MgSO_4 and evaporated under reduced pressure. The residue was separated by column chromatography.

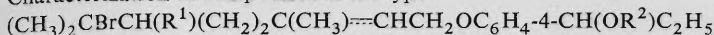
Preparation of Compound *VI*

N-bromosuccinimide (0.02 mol) was added to a solution of 4-(3,7-dimethyl-2,6-octadienyoxy)-propiophenone in methanol at 15–25°C, under nitrogen. The mixture was stirred at this temperature for 1 h and diluted with water and extracted with diethyl ether. Further procedure is described in the preceding experiments.

Preparation of Compounds *XII* and *XV*

A catalytic amount of *p*-toluenesulphonic acid was added to a solution of compound *II* (0.01 mol) in 2,3-dihydro-4*H*-pyrane or ethyl vinyl ether (0.01 mol) at room temperature and under stirring which was continued for another 10 minutes. After dilution with water and extraction with diethyl ether the product was obtained by column chromatography on silica gel.

Preparation of Compounds *XIX*–*XXIV*


A solution of compounds *II*–*V*, *X* or *XIV* (0.01 mol) in diethyl ether was added dropwise at 10–20°C under stirring and exclusion of atmospheric moisture to a suspension of LiAlH_4 (5 mmol, 20 wt.% excess) in diethyl ether. The mixture was refluxed for 30 min. After cooling with ice and dilution with diethyl ether the unreacted hydride in the mixture was decomposed by addition of water and dilute H_2SO_4 to the stirred solution. The separated ethereal layer was washed with a saturated NaCl solution, dried over MgSO_4 and evaporated under reduced pressure. The residue was purified by column chromatography as above.

Preparation of Compounds *XXV*–*XXX*

Chloride or anhydride of monocarboxylic acid (0.01 mol) was gradually added to a stirred solution of compound *XX*–*XXIV* (0.01 mol) and pyridine (0.01 mol), under addition of dimethylformamide if necessary, kept at room temperature. The mixture was allowed to stand at room temperature for 30 min in the case of acetic anhydride and overnight in the case of acid chloride. The isolation of the product was the same as in the preceding cases. During the preparation of compound *XXIX* the mixture of compound *XXII* (0.01 mol), dicarboxylic acid anhydride (0.01 mol) and pyridine (0.01 mol) was heated at 60°C for 10 h and then allowed to stand at room temperature overnight. The product was isolated as described above.

TABLE II

Characterization of compounds of the type

No	R ¹	R ²	Yield weight %	Formula (M.w.)	Calcul./Found	
					% C	% H
XIX ^a	OH	OH	60	C ₁₉ H ₂₉ BrO ₃ (385.3)	59.22 59.42	7.58 7.70
XX ^{b,c}	OH	OH	70	C ₁₉ H ₃₁ BrO ₃ (387.3)	58.91 58.77	8.07 8.02
XXI ^d	OCH ₃	OH	81	C ₂₀ H ₃₁ BrO ₃ (399.4)	60.14 60.31	7.82 7.65
XXII ^{b,e}	OCH ₃	OH	85	C ₂₀ H ₃₃ BrO ₃ (401.4)	59.84 59.57	8.29 7.99
XXIII ^{b,f}	Oi—C ₃ H ₇	OH	82	C ₂₂ H ₃₇ BrO ₃ (429.4)	61.52 61.30	8.68 8.38
XXIV ^b	OC ₂ H ₄ OCH ₃	OH	80	C ₂₂ H ₃₃ BrO ₄ (441.4)	59.86 59.96	7.54 7.51
XXV ^{b,g}	OH	OCOCH ₃	61 ^h	C ₂₁ H ₃₃ BrO ₄ (429.4)	58.74 58.63	7.75 7.75
XXVI ⁱ	OCH ₃	OCOCH ₃	85	C ₂₂ H ₃₃ BrO ₄ (441.4)	59.86 60.20	7.54 7.69
XXVII ^{b,j}	OCH ₃	OCOCH ₃	79 ^k	C ₂₂ H ₃₅ BrO ₄ (443.4)	59.59 59.29	7.96 7.81
XXVIII ^{b,l}	OCH ₃	OCOCH ₂ Cl	80 ^k	C ₂₂ H ₃₄ BrClO ₄ (477.9)	55.29 55.00	7.17 7.39
XXIX ^{b,m}	OCH ₃	OCOC ₂ H ₄ COOC ₂ H ₅	79 ^k	C ₂₆ H ₄₁ BrO ₆ (529.5)	58.97 58.80	7.81 7.59
XXX ^{b,n}	Oi—C ₃ H ₇	OCOCH ₃	89	C ₂₄ H ₃₉ BrO ₄ (471.5)	61.14 61.29	8.34 8.01
XXXI ^{b,o}	OC ₂ H ₄ OCH ₃	OCOCH ₃	84	C ₂₄ H ₃₉ BrO ₅ (487.5)	59.13 58.88	8.06 7.82

^a B.p. 165—7°C/13 Pa; IR spectrum (5%): 3 616 (ν(OH)), 3 573 (ν(OH)), 3 470 (ν(OH)) assoc. 1 672 (ν(C=C)), 1 611, 1 586, 1 513 (ν arom.) cm⁻¹. ^b 2,3-Dihydro compound. ^c B.p. 173 to 175°C/13 Pa; IR spectrum (5%): 3 617, 3 570 (ν(OH)), 1 614, 1 586, 1 515 (ν arom.), 1 383, 1 371 (δ_s(CH₃)) cm⁻¹; mass spectrum: 386/8 (M⁺); 368/70 (C₁₉H₂₉BrO₂), 339/41 (C₁₇H₂₄BrO₂), 288 (C₁₉H₂₈O₂), 277 (C₁₇H₂₅O₃), 261 (C₁₇H₂₅O₂), 231 (C₁₆H₂₃O), 175 (C₁₂H₁₅O), 161 (C₁₁H₁₃O), 155 (C₁₀H₁₉O), 134 (C₁₀H₁₄), 123 (C₇H₇O₂); ¹H-NMR spectrum, δ (ppm): 0.87 (t, 3 H, J = 7), 0.90—1.02 (m, 3 H), 1.31 (s, 3 H), 1.33 (s, 3 H), 1.48—2.2 (m, 8 H), 3.3 to 3.5 (m, H), 3.90—4.10 (m, 3 H), 4.52 (t, H, J = 7), 6.85 (m, 2 H, J = 9), 7.13 (m, 2 H, J = 9).

TABLE II
(Continued)

^a B.p. 162–164°C/13 Pa; IR spectrum (5%): 3 621 (ν (OH)), 3 487 (ν (OH) assoc.), 1 741 (ν (CO)), 1 674 (ν (C=C)), 1 614, 1 586, 1 516, 1 506 (ν arom.), 1 382, 1 369 (δ_s (CH₃)), 1 240 (ν_{as} (C—O)) cm⁻¹; mass spectrum: 398/400 (M⁺), 380/2 (C₂₀H₂₉BrO₂), 300 (C₂₀H₂₈O₂), 247/9 (C₁₁H₂₀·BrO), 215/7 (C₁₀H₁₆Br), 152 (C₉H₁₂O₂), 134 (C₉H₁₀O), 123 (C₇H₇O₂). ^b B.p. 167–169°C/13 Pa; IR spectrum (5%): 3 620 (ν (OH)), 1 614, 1 586, 1 515 (ν arom.), 1 382, 1 368 (δ_s (CH₃)) cm⁻¹; mass spectrum: 400/2 (M⁺), 382/4 (C₂₀H₃₁BrO₂), 367/9 (C₁₉H₂₈BrO₂), 339/41 (C₁₇H₂₄BrO₂), 289 (C₁₉H₂₉O₂), 231 (C₁₆H₂₃O), 201/3 (C₉H₁₄Br), 175 (C₁₂H₁₅O), 161/3 (C₈H₁₀Br), 137 (C₈H₉O₂), 134 (C₁₀H₁₄), 123 (C₇H₇O₂); ¹H-NMR spectrum, δ (ppm): 0.86 (t, 3 H, J = 7), 0.9–1.1 (m, 3 H), 1.26 (s, 3 H, J = 7), 1.31 (s, 3 H), 1.5–2.0 (m, 8 H), 3.20 (s, 3 H), 3.35–3.69 (m, H), 3.8–4.2 (m, 3 H), 4.51 (t, H, J = 7), 6.88 (m, 2 H, J = 9), 7.28 (m, 2 H, J = 9). ^c IR spectrum (5%): 3 620 (ν (OH)), 1 613, 1 586, 1 514 (ν arom.), 1 381, 1 369 (δ_s (CH₃)) cm⁻¹; mass spectrum: 428/30 (M⁺), 410/2 (C₂₂H₃₅BrO₂), 368/70 (C₁₉H₂₉BrO₂), 339/41 (C₁₇H₂₄BrO₂), 290 (C₁₉H₃₀O₂), 261 (C₁₇H₂₅O₂), 231 (C₁₆H₂₃O), 175 (C₁₂H₁₅O), 137 (C₈H₉O₂), 123 (C₇H₇O₂); ¹H-NMR spectrum, δ (ppm): 0.89 (t, 3 H, J = 7), 0.9–1.05 (m, 3 H), 1.15 (dd, 6 H, J = 6), 1.27 (s, 3 H), 1.35 (s, 3 H), 1.4–1.9 (m, 8 H), 3.7–4.1 (m, 5 H), 4.52 (t, H, J = 7), 6.86 (m, 2 H, J = 9), 7.24 (m, 2 H, J = 9). ^d IR spectrum (3%): 3 618, 3 571 (ν (OH)), 3 427 (ν (OH) assoc.), 1 740 (ν (CO)), 1 604, 1 516 (ν arom.), 1 382, 1 370 (δ_s (CH₃)), 1 238 (ν (C—O)) cm⁻¹; ¹H-NMR spectrum, δ (ppm): 0.84 (t, 3 H, J = 7), 0.88–1.20 (m, 3 H), 1.32 (s, 6 H), 1.5–1.95 (m, 8 H), 2.02 (s, 3 H), 2.6–3.06 (m, H), 3.4–4.15 (m, 3 H), 5.64 (t, H, J = 7), 6.88, 6.91 (m, 2 H, J = 9), 7.27, 7.98 (m, 2 H, J = 9). ^e Yield of bromohydroxylation. ^f IR spectrum (2%): 1 741, 1 730 (ν (CO)), 1 672 (ν (C=C)), 1 615, 1 588, 1 515 (ν arom.), 1 382, 1 369 (δ_s (CH₃)), 1 239 (ν (C—O)) cm⁻¹; mass spectrum: 440/2 (C₂₂H₃₃BrO₄), 380/2 (C₂₀H₂₉·BrO₂), 300 (C₂₀H₂₈O₂), 247/9 (C₁₁H₂₀BrO), 215/7 (C₁₀H₁₆Br), 194 (C₁₁H₁₄O₃), 134 (C₉H₁₀O), 123 (C₇H₇O₂); ¹H-NMR spectrum, δ (ppm): 0.84 (t, 3 H, J = 7), 1.26 (s, 3 H), 1.31 (s, 3 H), 1.73 (s, 3 H), 1.92–2.52 (m, 6 H), 2.02 (s, 3 H), 3.16 (s, 3 H), 3.75–4.08 (m, H), 4.53 (d, 2 H, J = 6.5), 5.61 (t, 2 H, J = 7), 5.63 (t, 2 H, J = 7), 6.89 (d, 2 H, J = 9), 7.29 (d, 2 H, J = 9). ^g IR spectrum (3%): 1 742 (ν (CO)), 1 614, 1 587, 1 516 (ν arom.), 1 381, 1 370 (δ_s (CH₃)), 1 239 (ν (C—O)) cm⁻¹; mass spectrum: 442/4 (M⁺), 413/5 (C₂₀H₃₀BrO₄), 399/401 (C₂₀H₃₂·BrO₃), 382/4 (C₂₀H₃₁BrO₂), 370/2 (C₁₈H₂₇BrO₃), 367/9 (C₁₉H₂₈BrO₂), 351/3 (C₁₉H₂₈·BrO), 339/41 (C₁₇H₂₄BrO₂), 331 (C₂₁H₃₁O₃), 289 (C₁₉H₂₉O₂), 271 (C₁₉H₂₇O), 249/51 (C₁₁H₂₂BrO), 134 (C₉H₁₀O), 123 (C₇H₇O₂); ¹H-NMR spectrum, δ (ppm): 0.79 (t, 3 H, J = 7), 0.85–0.95 (m, 3 H), 1.21 (s, 3 H), 1.26 (s, 3 H), 1.43–2.0 (m, 8 H), 1.96 (s, 3 H), 3.15 (s, 3 H), 3.23–3.50 (m, H), 3.7–4.05 (m, 3 H), 5.54 (t, H, J = 7), 6.80 (m, 2 H, J = 9), 7.18 (m, 2 H, J = 9). ^h Yield of bromomethoxylation. ⁱ IR spectrum (5%): 1 764, 1 742 (ν (CO)), 1 614, 1 587, 1 521, 1 516 (ν arom.), 1 382, 1 368 (δ_s (CH₃)), 1 249 (ν (C—O)) cm⁻¹; mass spectrum: 476/8 (M⁺), 447/9/51 (C₂₀H₂₉BrClO₄), 428/30 (C₂₁H₃₃BrO₄), 399/401 (C₂₀H₃₂BrO₃), 339/41 (C₁₇H₂₄BrO₂), 319 (C₂₀H₃₁O₃), 249/51 (C₁₁H₂₂BrO), 199/201 (C₉H₈ClO₃), 134 (C₉H₁₀O), 73 (C₄H₉O); ¹H-NMR spectrum, δ (ppm): 0.84 (t, 3 H, J = 7), 0.88 to 1.1 (m, 3 H), 1.25 (s, 3 H), 1.31 (s, 3 H), 1.5–2.05 (m, 8 H), 3.20 (s, 2 H), 3.25–3.7 (m, H), 3.8–4.15 (m, 3 H), 4.02 (s, 3 H), 5.73 (t, H, J = 7), 6.88 (m, 2 H, J = 9), 7.26 (m, 2 H, J = 9). ^m IR spectrum (3%): 1 741, 1 732 (ν (CO)), 1 615, 1 587, 1 521, 1 516 (ν arom.), 1 381, 1 369, (ν arom.), 1 381, 1 369 (δ_s (CH₃)), 1 249 (ν (C—O)) cm⁻¹; mass spectrum: 528/30 (M⁺), 497/9 (C₂₅H₃₈BrO₅), 448 (C₂₆H₄₀O₆), 417 (C₂₅H₃₇O₅), 382/4 (C₂₀H₃₁BrO₂), 367/9 (C₁₉H₂₈BrO₂), 351/3 (C₁₉H₂₈·BrO), 339/41 (C₁₇H₂₄BrO₂), 302 (C₂₀H₃₀O₂), 289 (C₁₉H₂₉O₂), 271 (C₁₉H₂₇O), 249/51 (C₁₁·H₂₂BrO), 169 (C₁₁H₂₁O), 151 (C₉H₁₁O₂), 134 (C₉H₁₀O), 73 (C₄H₉O); ¹H-NMR spectrum, δ (ppm): 0.83 (t, 3 H, J = 7), 0.85–1.2 (m, 6 H), 1.28 (s, 3 H), 1.33 (s, 3 H), 1.45 to 2.2 (m,

TABLE II
(Continued)

8 H), 2.61 (m, 4 H), 3.22 (s, 3 H), 3.30–3.50 (m, H), 3.80–4.2 (m, 5 H), 5.63 (t, H, J = 7), 6.85 (m, 2 H, J = 9), 7.26 (m, 2 H, J = 9). ^a IR spectrum (3%): 1743 (ν (CO)), 1614, 1588, 1516 (ν arom.), 1381, 1370 (δ_s (CH₃)), 1240 (ν (C—O)) cm⁻¹; mass spectrum: 470/2 (M⁺), 441/3 (C₂₂H₃₄BrO₄), 411/3 (C₂₂H₃₆BrO₂), 410/2 (C₂₂H₃₅BrO₂), 390 (C₂₄H₃₈O₄), 351/3 (C₁₉H₂₈·BrO), 350/2 (C₁₉H₂₇BrO), 339/41 (C₁₇H₂₄BrO₂), 289 (C₁₈H₂₅O₃), 261 (C₁₇H₂₅O₂), 231 (C₁₆H₂₃O), 194 (C₁₁H₁₄O₃), 165 (C₉H₉O₃), 135 (C₉H₁₁O), 134 (C₉H₁₀O), 123 (C₇H₇O₂), 107 (C₇H₇O), 101 (C₆H₁₃O); ¹H-NMR spectrum, δ (ppm): 0.83 (t, 3 H, J = 7), 0.9–1.0 (m, 3 H) 1.09 (dd, 6 H, J = 6), 1.24 (s, 3 H), 1.33 (s, 3 H), 1.4–2.0 (m, 8 H), 2.02 (s, 3 H), 3.65–4.06 (m, 5 H), 5.58 (t, H, J = 7), 6.82 (m, 2 H, J = 9), 7.21 (m, 2 H, J = 9). ^b IR spectrum (3%): 1741 (ν (CO)), 1603, 1577, 1514 (ν arom.), 1382, 1368 (δ_s (CH₃)) cm⁻¹; mass spectrum: 486/8 (M⁺), 456/8 (C₂₂H₃₃BrO₅), 427/9 (C₂₂H₃₆BrO₃), 426/8 (C₂₂H₃₅BrO₃), 410/2 (C₂₁H₃₁·BrO₃), 384/6 (C₁₈H₂₅BrO₄), 367/9 (C₁₈H₂₄BrO₃), 339/41 (C₁₇H₂₄BrO₂), 289 (C₁₈H₂₅O₃), 151 (C₉H₁₁O₂), 137 (C₈H₉O₂), 131 (C₇H₁₅O₂), 121 (C₈H₉O); ¹H-NMR spectrum, δ (ppm): 0.97 (t, 3 H, J = 7), 1.0–1.2 (m, 3 H), 1.31 (s, 3 H), 1.35 (s, 3 H), 1.45–2.0 (m, 8 H), 2.02 (s, 3 H), 3.51 (s, 3 H), 3.3–3.7 (m, H), 3.8–4.3 (m, 6 H), 5.65 (t, H, J = 7), 6.95 (m, 2 H, J = 9), 7.99 (m, 2 H, J = 9).

TABLE III

Characterization of Compounds of the type
(CH₃)₂CBrCHBr(CH₂)₂C(CH₃)R¹CHR²CH₂OC₆H₄-4-COC₂H₅

No	R ¹	R ²	Yield weight, %	Formula M.w.	Calculated/Found	
					% C	% H
XXXII ^a	H	H	80	C ₁₉ H ₂₈ Br ₂ O ₂ (448.2)	50.91 50.70	6.30 6.58
XXXIII ^b	double	bond	35	C ₁₉ H ₂₆ Br ₂ O ₂ (446.2)	51.14 50.90	5.87 5.90
XXXIV ^c	Br	Br	12 ^d	C ₁₉ H ₂₆ Br ₄ O ₂ (606.0)	37.65 37.34	4.32 4.01

^a Calculated: 35.65% Br; found: 35.21% Br; mass spectrum: 445/7/9 (C₁₉H₂₇Br₂O₂), 417/9/21 (C₁₇H₂₃Br₂O₂), 366/8 (C₁₉H₂₇BrO₂), 337/9 (C₁₇H₂₂BrO₂), 257 (C₁₇H₂₁O₂), 203 (C₁₃H₁₅·O₂), 189 (C₁₂H₁₃O₂), 175 (C₁₁H₁₁O₂), 161/3 (C₆H₁₀Br), 147/9 (C₅H₈Br), 137 (C₁₀H₁₇), 121 (C₇H₅O₂). ^b Calculated: 35.82% Br; found: 35.40% Br; mass spectrum: 444/6/8 (M⁺), 415/7/9 (C₁₇H₂₁Br₂O₂), 365/7 (C₁₉H₂₆BrO₂), 294/6/8 (C₁₀H₁₆Br₂), 215/7 (C₁₀H₁₆Br), 150 (C₉H₁₀·O₂), 135 (C₈H₇O₂), 121 (C₇H₅O₂). ^c Calculated: 52.74% Br; found: 52.59% Br; mass spectrum: 602/4/6/8/610 (M⁺), 573/5/7/9/81 (C₁₇H₂₁Br₄O₂), 523/5/7/9 (C₁₉H₂₆Br₃O₂), 494/6/8/500 (C₁₇H₂₁Br₃O₂), 318/20 (C₁₆H₁₅BrO₂), 215/7 (C₁₀H₁₆Br), 150 (C₉H₁₀O₂), 135 (C₈H₇O₂), 121 (C₇H₅O₂). ^d Compound XXXIV was isolated as a by-product during the preparation of compound XXXIII.

Preparation of Compounds *XXXII—XXXIV*

Bromine (0.01 mol) was added dropwise to a solution of 4-(3,7-dimethyl-2,6-octadienyloxy)- or 4-(3,7-dimethyl-2-octenylloxy)propiophenone (0.01 mol) in CCl_4 at 0° and the mixture was stirred at this temperature for 30 min. After evaporation of the solvent under reduced pressure the residue was separated on a 100-fold amount of silica gel, using light petroleum with increasing amounts of diethyl ether for elution.

Elemental analyses were carried out by Mrs A. Froňková, Mrs E. Sýkorová, Mrs J. Konečná and Mrs E. Šípová (head of the department Dr J. Horáček); the mass spectra were measured and interpreted by Dr J. Kohoutová (head of the department Dr L. Dolejš); the IR spectra were measured and interpreted by Mrs K. Matoušková and Dr P. Fiedler (head of the department Dr J. Smolíková); the $^1\text{H-NMR}$ spectra were measured and interpreted by †Dr M. Synáčková, Dr M. Masojídková, Mrs J. Jelinková, Mrs M. Snopková and Dr D. Šaman (head of the laboratory †Dr Z. Samek). Biological tests were carried out by Dr K. Sláma, Entomological Institute, Czechoslovak Academy of Sciences, Prague.

REFERENCES

1. Kahovcová J., Romaňuk M.: This Journal 46, 1413 (1981).
2. Kahovcová J., Romaňuk M.: This Journal 46, 1614 (1981).
3. Kahovcová J., Romaňuk M., Sláma K.: Czech. 200 416 (1978).
4. Sláma K., Romaňuk M., Šorm F.: *Insect Hormones and Bioanalogues*. Springer, Wien 1974.

Translated by Ž. Procházka.